

Importância da alimentação nos primeiros 21 dias de vida de frangos de corte

10 de novembro de 2021

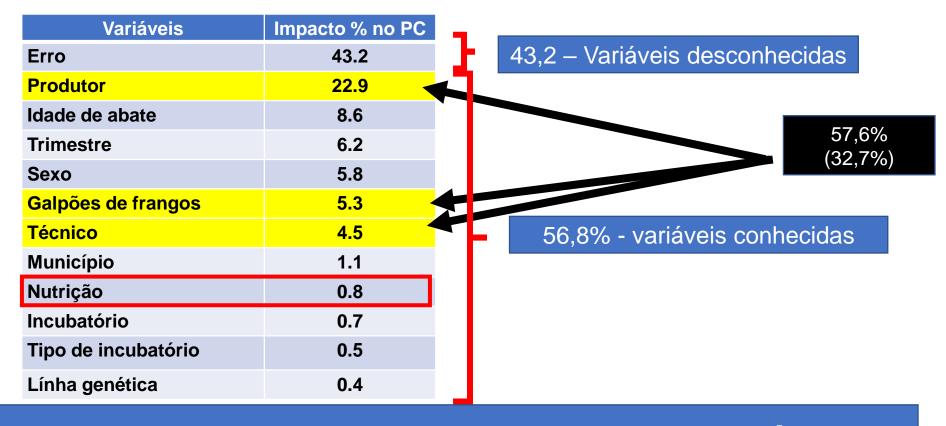
Antônio Mário Penz Junior Cargill Animal Nutrition mario_penz@cargill.com

Agenda

- 1. Introdução
- 2. Primeira semana
- 3. Segunda semana
- 4. Terceira Semana
- 5. Conclusão

Agenda

- 1. Introdução
- 2. Primeira semana
- 3. Segunda semana
- 4. Terceira Semana
- 5. Conclusão

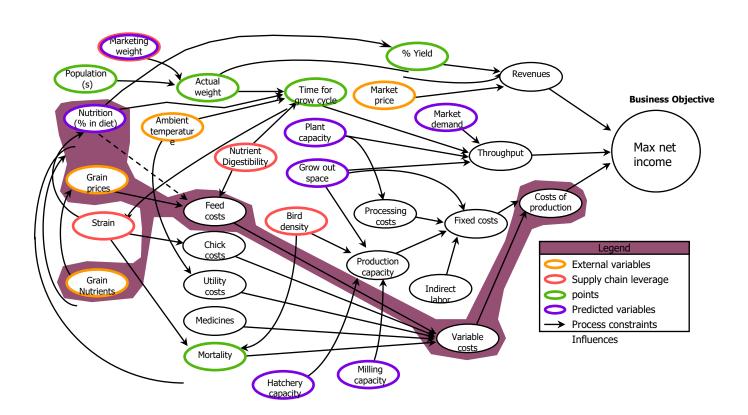


Produção de griller (28 dias) – 21 dias representa 75% da vida do frango

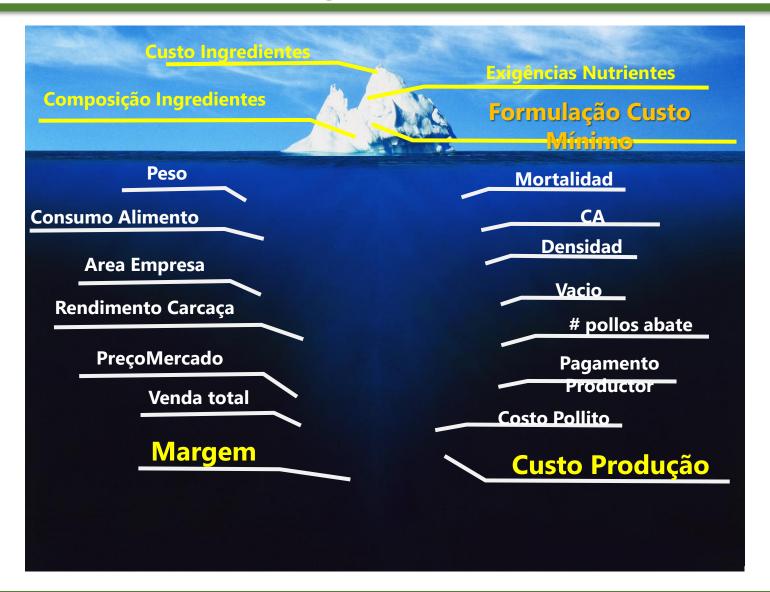
Produção de broiler (42 dias) – 21 dias representa 50% da vida do frango

Análise de dados – Variáveis que afetam o peso corporal

Os inventários das granjas são INDISPENSÁVEIS

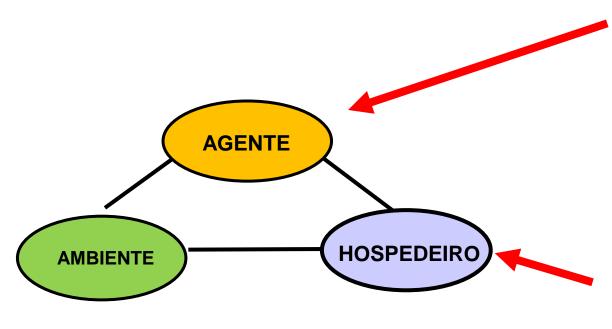


Manual de treinamento dos funcionários


Como tomar a melhor decisão em um ambiente tão complexo, interconectado e variável?

- Que tipo de produção?
- Que linhagem?
- Que sexo?
- Que peso de abate?
- Que época do ano?
- Que tipo de instalação?
- Número de aves/funcionário?
- Número de aves/técnico?

Formulação Não Linear

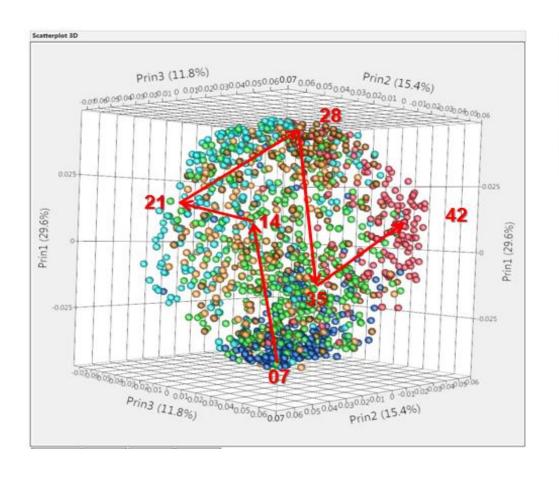


Formulação não linear não busca o menor custo do alimento e sim a melhor margen de contribuição

Scenarios	Current	1	2	3	4
Contribution Margin (1000 US\$/year)	8.314	8.355	8.392	8.425	8.803
Cntribution Margin Upside (1000 UD\$/year)		41	78	111	489
Live cost (US\$/kg)	2,116	2,115	2,113	2,111	2,121
Feed Conversion	1,821	1,825	1,812	1,799	1,813
Body Weight (kg)	2,66	2,66	2,66	2,66	2,70
Slaughtering Age (d)	46,0	46,0	45,9	45,7	46,2
Downtime (d)	19,0	16,0	16,0	16,0	16,1
Stocking Density (birds/m2)	13,3	13,1	13,1	13,1	12,8
average PME (kcal/kg)	3219	3219	3225	3231	3232
average Lysine (%)	1,069	1,069	1,078	1,088	1,087
Feed Cost (US\$/ton)	901	901	907	913	912

Tripe Epidemiológico

Aditivos Antibióticos actuam por ação direta sobre o agente, reduzindo os desafios.


- Terapêuticos
- Promotores de Crescimiento
- Anticoccidianos

Aditivos não antibióticos atuam diretamente na saúde intestinal do hospedeiro, reduzindo o desafio, de uma maneira indireta.

- Enzimas
- Prebióticos
- Prebióticos
- Acidificantes
- Fitogênicos
- Antioxidantes

Produção em tempo real – alteração da microbiota

- 7 días
- 14 días
- 21 días
- 28 días
- 35 días
- 42 días

A microbiota muda com a idade!

Produção em Tempo Real

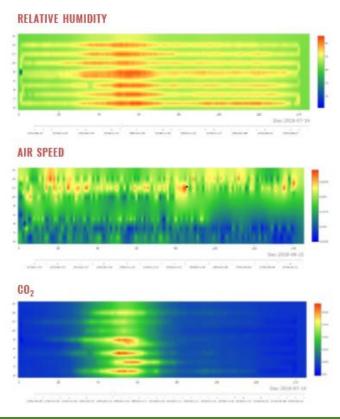


Image post processing by Computer Vision System

(a.83000)
(a.80000)
(a.8000)
(a.80000)
(a.80000

Agenda

- 1. Introdução
- 2. Primeira semana
- 3. Segunda semana
- 4. Terceira Semana
- 5. Conclusão

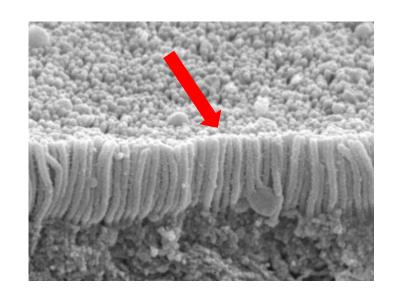
No trato digestivo, as enzimas que atuam sobre os carboidratos, os lipídios e as proteínas SÃO SUBSTRATO DEPENDENTES.

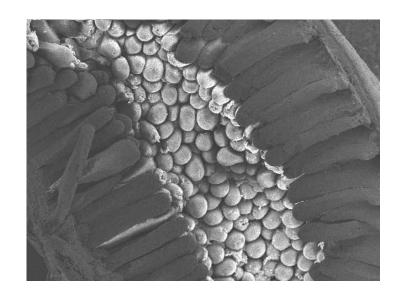
Qualquer dia com ganho de peso abaixo do esperado, dificilmente será recuperado nos dias seguintes. Mas, a CA <u>nunca</u> será recuperada.

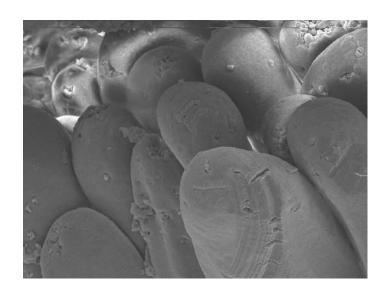
Com isto, os pesos semanais devem ser alcançados.

Diferente anatomia do TGI

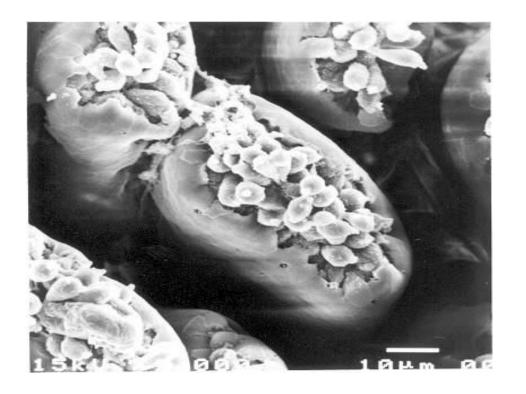
Diferente fisiologia do TGI


Digestão e absorção dos nutrientes é limitada


Desenvolvimento do sistema imune


Desenvolvimento do sistema de termorregulação

Vilosidades dos pintos com 12 horas de vida


70% da resposta imune dos frangos é estimulada no trato digestivo.

Adaptado de Viola, Penz e Ribeiro, 2003

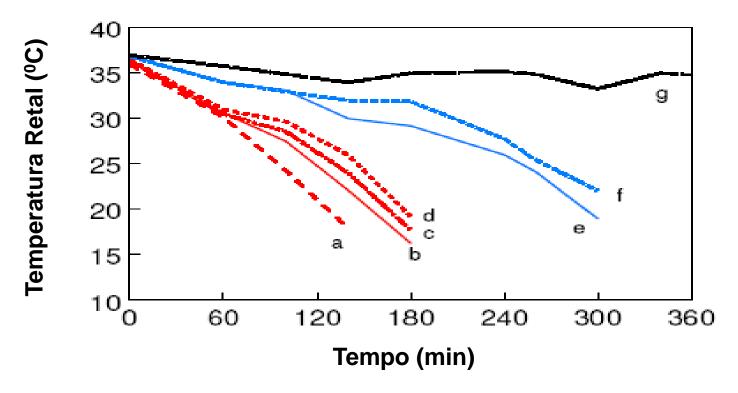
Casteel et al., 1994 — O atraso no consumo de água e de alimento promove uma depressão das respostas imunes.

Geyra et al., 2001 – Migração de enterócitos demora 72 horas em frangos com 4 dias e 96 horas en frangos mais velhos.

Pesos relativos do intestino delgado e do pâncreas dos frangos em relação ao peso corporal

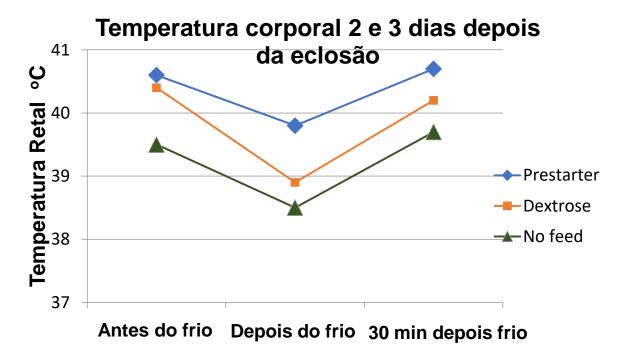
	% Pes	Pico pós eclosão	
	Eclosão	Pico Crescimento	Dias
Intestino	1,2 a 2,6	6,2 a 6,6	5 a 7
Pâncreas	0,1 a 0,2	0,5 a 0,8	8 a 9

Adaptado de Macari et al., 2002


Alterações das vilosidades com a idade

Parâmetros	unidades	Dias			
		1	7	14	21
Número	Quad	13,0	12,9	11,9	10,9
Altura	μm	514	1340	1448	1657
Prof Cripta	μm	54	86	114	101

Adaptado de Viola, Penz e Ribeiro, 2003

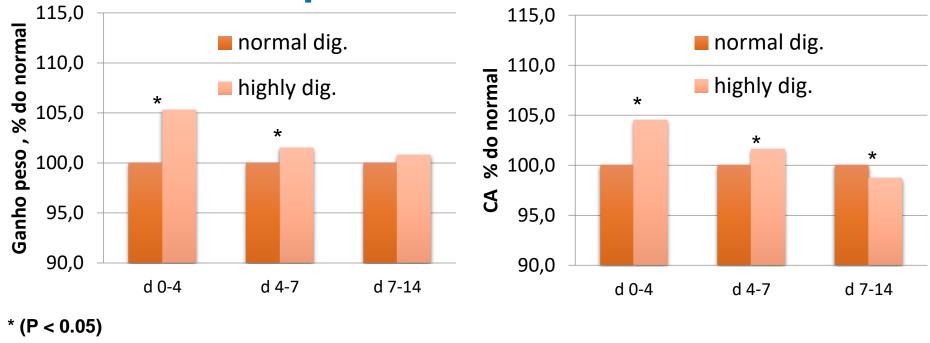

Temperatura retal de 7 pintos, individualmente alojados, em um ambiente com 10°C e 60% de umidade relativa

Adaptado de Kalthoven e Dijk, 1984.

Desenvolvimento do sistema de termoregulação

A nutrição afeta o sistema de termorregulação

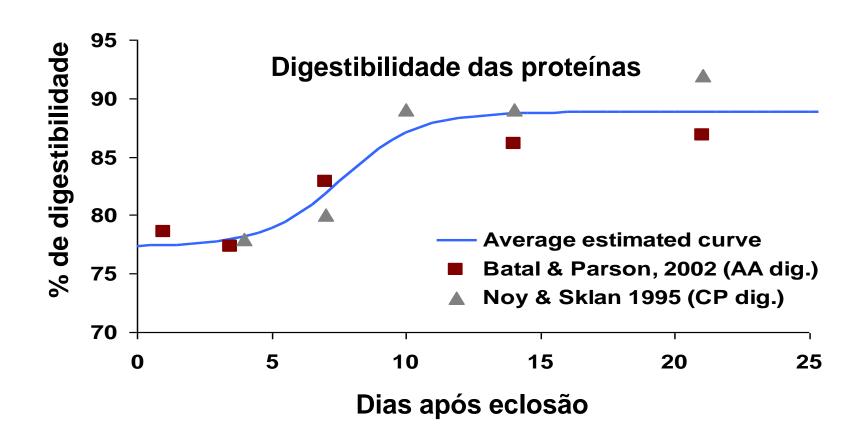
Adaptado de Van den Brand et al., 2010


Penz, 1992 – Frangos necessitam de mais proteína até os 17 dias de idade. Eles empregam esta proteína para auxiliar na manutenção da temperatura corporal. Os amino ácidos têm alto incremento calórico.

Schutte, 1997 – Dietas não podem ter menos do que 21% de proteína pois glicina + serina passam a ser limitantes. A exigência da soma destes dois amino ácidos é 1,85%. O NRC (1994) sugere somente 1,25%.

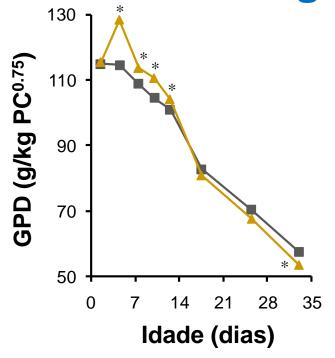
Stringhini et al., 2007 – Níveis crescentes de arginina promoveram uma resposta quadrática da CA. 1,46% de arginina digestível promoveu a melhor CA na fase pré inicial. Assim, também é importante avaliar a relação arg:lis digestíveis.

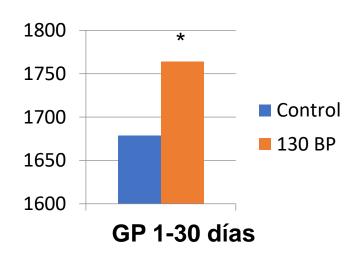
Efeito da proteína no desenvolvimento dos frangos na primeira semana



Proteínas altamente digestíveis (farinha de pescado, proteína de batata e glúten de milho) são mais importantes aos primeiros 4 dias de idade.

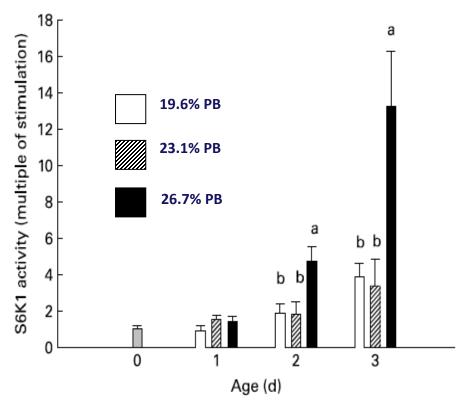
Adaptado de Wijtten et al., 2012


Digestibilidade das proteínas em frangos



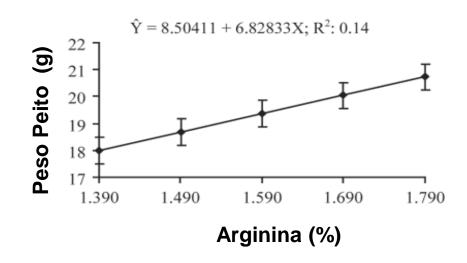
Nutrientes com baixas digestibilidades favorecem o desenvlvimento de uma microbiota indesejada.

Efeito da proteína no desenvolvimento do duodeno e no ganho de peso



Control (■), 130 CP (▲), Cobb 500 y Ross 308 frangos machos Adaptado de Wijtten et al., 2010

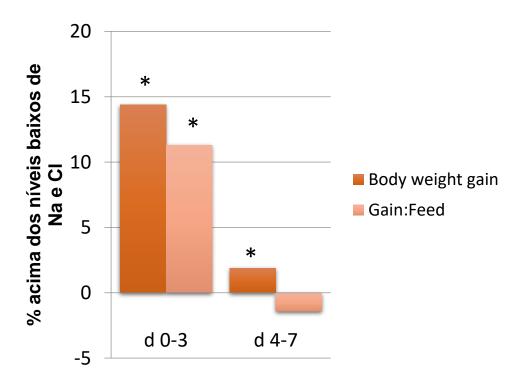
Efeito da proteína na fase pré inicial sobre as atividades metabólicas


A proteína S6 quinase citoplasmática serina/treonina ribossomal (S6K1) é fundamental na transferência das proteínas da musculatura esquelética.

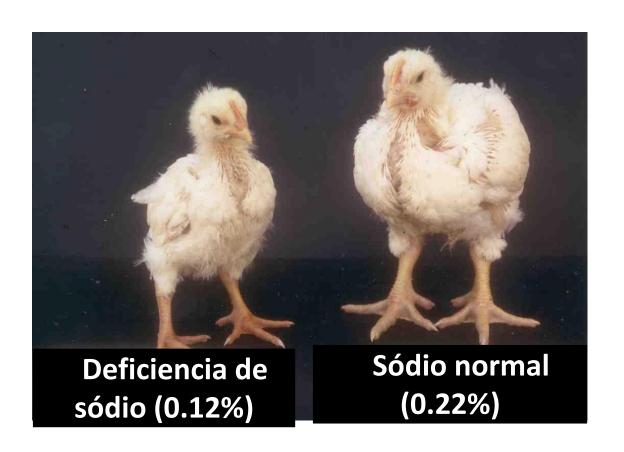
Adaptado de Everaert et al (2010)

Efeito da arginina no peso de peito e no peso e espessura do filé de peito aos 7 dias de idade

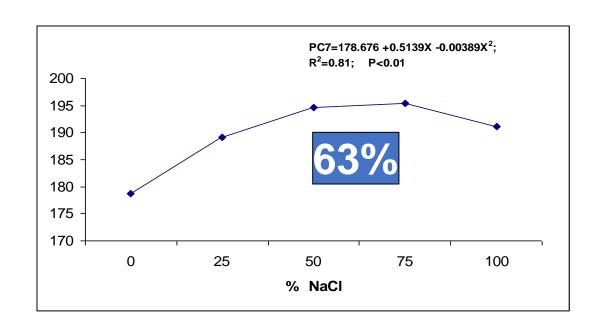
A suplementação de arginina pode induzir a proliferação de células satélite.

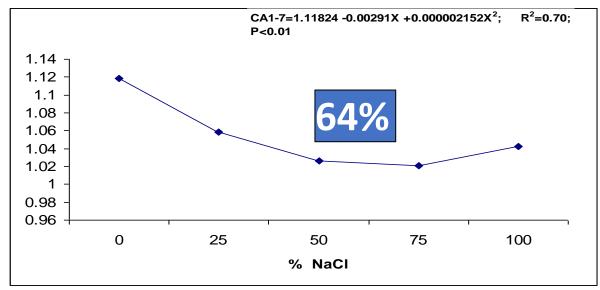

A arginina está relacionada com a secreção de insulina e a ação do hormônio de crescimento (GH) é mediada por fatores "insulin-like", como IGF, IGF-I y IGF-II.

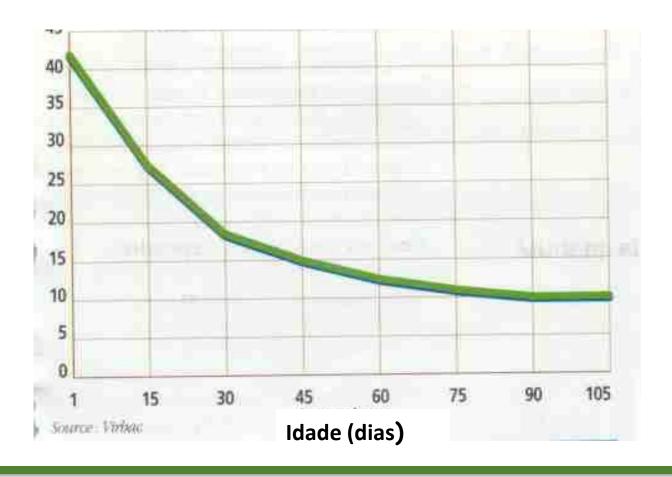
Adaptado de Fernandes et al., 2009


Os IGF estimulam varias atividades anabólicas nos músculos do esqueleto, assim como a proliferação e a diferenciação das células satélites, relacionadas com o aumento da síntese de proteína muscular.

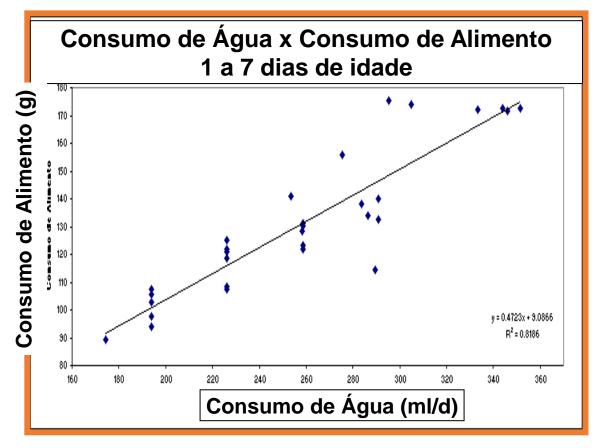
Efeito do sódio (nível alto – acima de 0,2%) e cloro (nível alto – acima de 0,3%) comparados com níveis baixos destes dois minerais

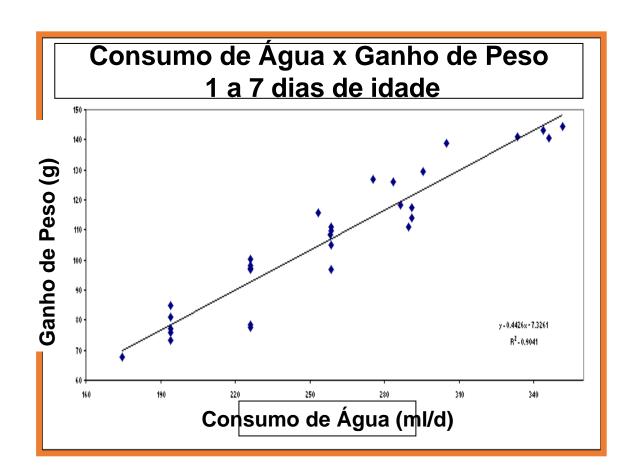

* Diferente (P < 0.05) do tratamento controle Adaptado de Provimi Holanda, 2011





Efeito do cloreto de sódio e do bicarbonato de sódio no GP de frangos com 7 dias de idade (g)




Consumo de água (percentagem do peso)

Os frangos comem porque bebem e por isto ganham peso!

Adaptado de Viola, Ribeiro e Penz, 2003

Efeito do nível de cloro no desempenho dos frangos

Tratamentos (ppm Cloro)	Consumo Alimento (g)	Ganho de Peso (g)	Conversão Alimentar (g/g)
0	3361 bc	2163 ab	1,55
6	3568 a	2271 a	1,57
12	3408 b	2179 a	1,56
18	3440 ab	2174 a	1,58
60	3224 c	2024 b	1,59
Р	< 0,001	< 0,001	0,60

Nutron Alimentos Ltda, 2009

Alimentação na chegada dos pintos

Pinto não come

Diminui a glicose sanguínea pois tem pouco glicogênio

Falta de glicose causa apatía

Apatía reduz consumo

Redução de consumo disminui a glicose

Redução de glicose aumenta apatía

Desempenho de frangos alojados imediatamente e com 24 horas de atraso

Alojamento	GP (g)		Mortalidade (%)	
	1 a 21 dias	1 a 49 dias	1 a 21 dias	1 a 49 dias
Imediato	647	2654	2,0	6,3
24 h atraso	598	2568	1,5	10,5
Prob	0,001	0,01	NS	0,05

Adaptado de Vieira e Moran, 1999

Nutrição de qualidade é fundamental. Mas, <u>consumo do</u> <u>alimento</u> é mais importante.

	Consumo – 200g		Consumo – 190 g	
	Exigência	Consumo	Consumo	Exigência
Proteína Bruta	23,0	46,0 g	43,7 g	24,2
Lis Digest	1,33	2,66 g	2,57 g	1,40
EMA	2900	580 kcal	532 kcal	3052

Desempenho de frangos alojados imediatamente e com 24 horas de atraso

Alojamento	GP (g)		Mortalidade (%)		
	1 a 21 dias	1 a 49 dias	1 a 21 dias	1 a 49 dias	
Imediato	647	2654	2,0	6,3	
24 h atraso	598	2568	1,5	10,5	
Prob	0,001	0,01	NS	0,05	

Adaptado de Vieira e Moran, 1999

Introdução

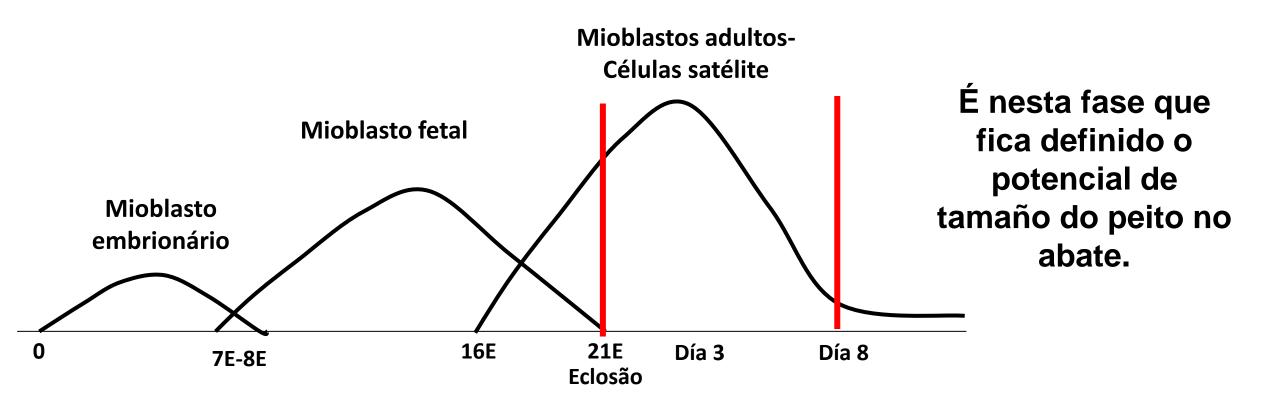
Cobertura do piso com papel

As divisórias devem ser colocadas desde o pinteiro e ir abrindo junto com o espaço de galpão.

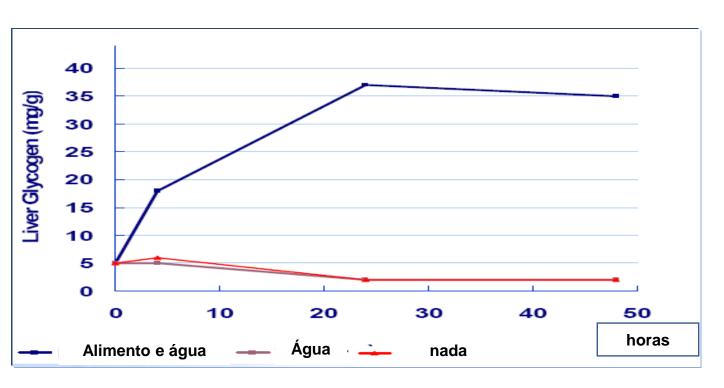
Consumo de Alimento

- Na manhã seguinte do alojamento avalie 100 pintos.
- Verifique o conteúdo do papo:
 - Repleto com presença de comida e água
 - Duro não consumiu água suficiente
 - Distendido encontrou água, mas não alimento

- Vazio


Meta:

Mínimo 95% de papos cheios


Importância da alimentação na fase pós eclosão

Importância de uma alimentação especial durante a terceira onda de transformação dos mioblastos

Efeito do consumo de água e de alimento no acúmulo de glicogênio

Adaptado de Warriss et al.,

O glicogênio hepático armazenado durante a fase embrionária é suficiente só para o primeiro dia de vida dos frangos.

Adaptado de Best, 1966

Efeito do jejum no peso relativo e no desenvolvimento muscular

		Período de jejum (dias)			
	Dias	Normal	0 a 2	2 a 4	4 a 6
Peso Corporal	8	100 a	78,4 c	79,3 c	82,8 b
Peso Corporal	41	100 a	92,7 c	94,0 bc	97,8 ab
Músculo peito	41	100 a	88,6 b	91,3 b	100,9 a

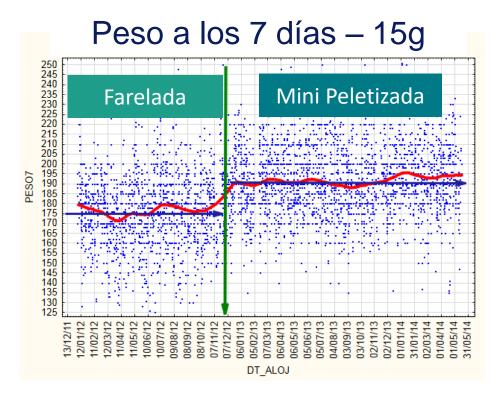
Adaptado de Havely et al., 2000

Tamanho de partículas e utilização de nutrientes aos 7 dias de idade

DGM	EMAn	Retenção de Nitrogênio	Retenção de Matéria Seca
(micra)	(kcal/kg)	(%)	(%)
561	2780 b	50 c	72 c
783	2787 b	57 b	75 b
997	2843 a	59 a	77 a
Probab	0,006	< 0,001	< 0,001

Adaptado de Kraabe e Penz, 2000

Efeito do tamanho de pelete de 2 mm usado na fase pré inicial no desempenho dos frangos


Dia (1 a 8)	Dia (9 a 36)	Tamanho Partícula	GP (g)
Farelada	Farelada	Fino	1890 ^a
Pelete	Farelada	Fino	2017 ^c
Farelada	Farelada	Grossa	1948 ^b
Pelete	Farelada	Grossa	2063 ^{cd}
Pelete	Pelete	Fina	2118 ^d

1 a 8 dias pelete de 2 mm e depois pelete de 3 mm Milho e trigo moídos em moínho de rolo para tamanho de partícula grosso Depois mesmo milho e trigo moído em moínho martelo para tamanho de partícula fino (pemeira 5 mm e rpm 3000)

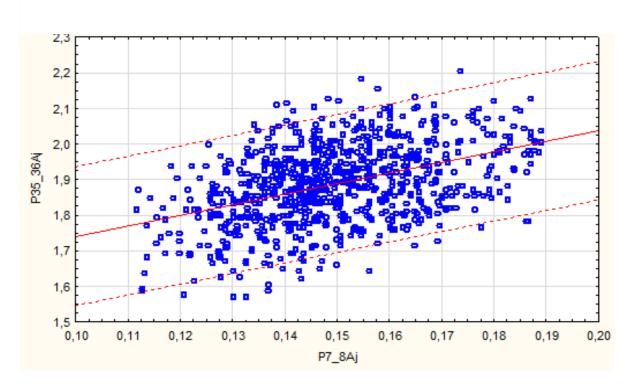

Adaptado de Provimi Holanda, sd P<0,05

Efeito da forma física da dieta no peso aos 7 dias

Isto significa uma relação de 1:4

Agenda

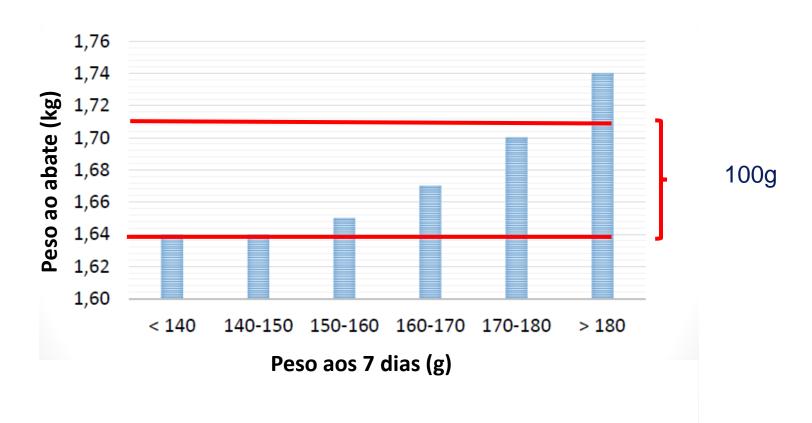
- 1. Introdução
- 2. Primeira semana
- 3. Segunda semana
- 4. Terceira Semana
- 5. Conclusão



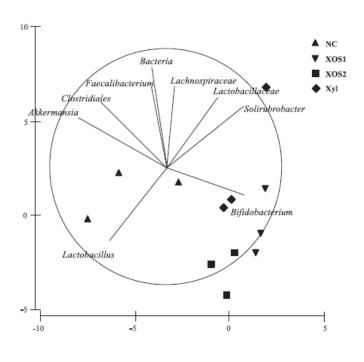
Segunda Semana

Que peso esperamos aos 7 dias?

Com 7 dias esperamos 4,5 vezes o peso de alojamento


1g aos 7 dias representa 3g aos 35 días

O que não podemos continuar esperando é esta variabilidade, já aos 7 dias.


Que peso esperamos aos 7 dias?

Adaptado de Abad, 2017

Uniformização da digestibilidade da dieta com, consequente, uniformidade da microbiota.

Microbiota bacteriana no ceco de aves alimentadas com uma dieta à base de trigo, suplementada com uma mistura de β-1,4-xilanase (XYL) e xilo-oligossacarídeos, fornecida em duas incorporações:

0,1 g / kg (XOS1) ou 1 g / kg (XOS2).

XOS modula a população microbiana no TGI

Adaptado de Ribeiro et al, 2018

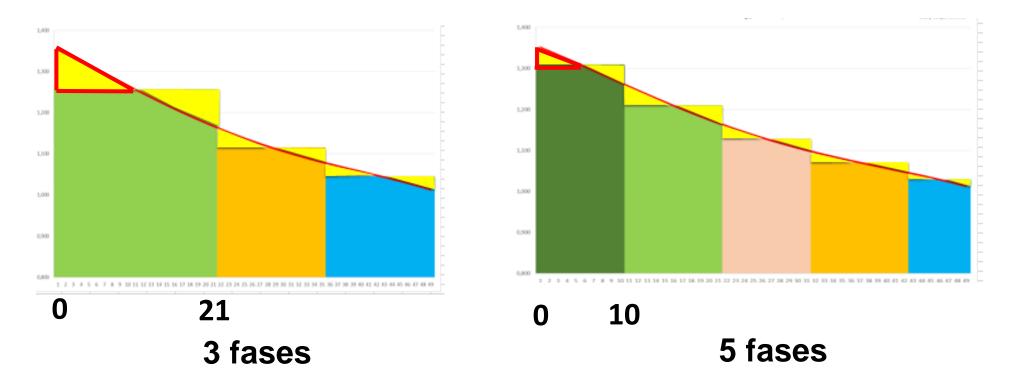
Segunda Semana

Desempenho de frangos submetidos a diferentes programas de alimentação

Parâmetro	os	PM 1- 17 PC 18 – 33 PF 34 - 37	PM 1- 14 PC 15 – 33 PF 34 - 37	PM 1- 10 PC 11 - 33 PF 34 - 37	PM 1- 7 PC 8 - 33 PF 34 - 37	Prob
Consumo Alimento	g	954	974	986	966	0,37
Peso Corporal	g	568	572	567	572	0,70
Conversão Alimentar	g/g	1,68	1,70	1,74	1,69	0,36

Saveewonlop et al., 2019

PM – moída (3,0mm), PC – peletizada crescimento (3,5mm), PF – peletizada final (4,0mm)



Agenda

- 1. Introdução
- 2. Primeira semana
- 3. Segunda semana
- 4. Terceira Semana
- 5. Conclusão

Quantas fases de alimentação?

Com mais fases a formulação é mais precisa e reduz a excreção e a poluição.

Fases de Alimentação - períodos

Período	Lys Dig/ 1000 kcal	Lys Dig/3000 kcal	Dias con valores abaixo da necessidade
0 a 7	0,430	1,290	3,5
0 a 10	0,424	1,272	5
0 a 14	0,415	1,245	7
0 a 21	0.399	1,197	10,5

Efeito da redução de 1% da proteína bruta da dieta, na produção de CO₂ (kg CO₂ equivalente/kg de alimento).

Ingredientes	Dieta 19% PB	Dieta 18% PB	Diferença (%)
Milho	0,6535	0,6909	+ 5,7
Farelo de Soja	1,3060	1,1705	- 10,4
Óleo de soja	0,4881	0,4044	- 17,1
Outros	0,0271	0,0381	+ 40,6
Total	2,4747	2,3039	- 6,9

Modelo de sustentabilidade Cargill, cálculo feito 27.05.2021

Efeito da granulometría do farelo de soja e da forma física das dietas, no desemepnho de frangos de corte (1 – 21 días)

	Forma Física	DGM (micra)			Probabilidade			
		625	775	1053	1406	Α	В	AxB
Ganho de	Farelada	797 Aab	803 AaB	818 Aa	760 Bb	0.40	0.004	0.004
Peso (g) Moída	834 Ab	799 Ab	824 Ab	891 Aa	0,18	0,001	0,001	

Marx, et al., 2020 a, b – linhas A, B - colunas

Moagem conjunta - distribuição de partículas nas diferentes peneiras

		PB	
micra	PB (%)	ESPERADA(%)	DIFERENÇA (%)
4.000	ND	21,0	ND
2.000	16,7	21,0	- 25,7
1.190	23,2	21,0	+ 9,5
590	25,8	21,0	+ 22,9
297	19,2	21,0	- 9,4
149	14,0	21,0	- 33,3
Fundo	ND	21,0	ND
Valores ponderados	21,5		

Pela coluna marcada em vermelho, é possível ver que os frangos que primeiro consomem a dieta têm acesso as partículas grossas e podem "escolher" as partículas para compor sua dieta essencial. Já os que tem acesso mais tarde terão à disposição partículas mais finas e com um desiquilibro de PB, e quem sabe, de outros nutrientes e energia.

Agenda

- 1. Introdução
- 2. Primeira semana
- 3. Segunda semana
- 4. Terceira Semana
- 5. Conclusão

Conclusões

- 1. Qual é o propósito da criação de frangos?
- 2. Antes de qualquer preocupação com a nutrição, identificar se os produtores estão bem treinados para as atividades de produção
- 3. Estimular consumo nas primeiras horas de alojamento é o processo mais importante na produção.
- 4. Ter cuidados de manejo que podem favorecer a quantidade de alimento consumida.
- 5. Ter consciência da importância da água
- 6. Alcançar aos 7 e aos 14 dias, 4,5 e 12,5 vezes o peso de alojamento.
- 7. Na primeira semana, manter a variabilidade do lote com menos de 2% de CV acima do valor de alojamento.
- 8. Definir a idade de inicio de uso de dieta peletizada.
- 9. Cuidar com a segregação do farelo de soja com partículas finas, especialmente quando este ingrediente é moído, conjuntamente, com o milho.

